
L.8R4RY
TECHNICAL REPORT SECTION
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA S334Q

NPS69-81-001 B

NAVAL POSTGRADUATE SCHOOL
'

Monterey, California

BALL MOTION IN A BALL-OBTURATED

TUBULAR PROJECTILE

R. H. Nunn
J. W. Bloomer II

January, 1981

Final report for period ending 31 December, 1980

Approved for public release; distribution unlimited

FEDDOCS Prepared for:
D208.l4/2:NPS-69-8l-G0l Technology Programs Management Office (Code 3205)

Naval Weapons Center, China Lake, CA 93555



NAVAL POSTGRADUATE SCHOOL
Monterey, California

J. J. Ekelund, RADM, USN D. A. Schrady
Superintendent Acting Provost

This report documents progress for the period ending 31 December,
1980, in the project titled "Ball -Obturated Spinning Tubular Projectile."

The work reported herein has been monitored and supported by the
Technology Programs Management Office (Code 3205), Naval Weapons Center
China Lake, California, and was initiated by Work Request No. N60530-
WR30134.

Reproduction of all or part of this report is authorized.

This report was prepared by:

n



UNCLASSIFIED
SECURITY CL AS*:l TIC AT ion OF this p W-.en Dm! a t'nfrtrl)

:::;::u;^;rrAT:c;i pa;
i

HEAD INSTRUCTIONS
FF.FOR1T COMPLETING FORM

K RL?'OHT NUHUiH

NPS69-31-00l£>

2. GOVT ACCESSION wo. 3- RECIPIENT'S CATALOC, NUMBER

,4. TITLE f»nd 5u(irlil«)

BALL MOTION IN A BALL-OBTURATED TUBULAR PROJECTILE

5. TYPE OF DEPORT 4 PERIOD COVCiEO
Final report for period
ending 31 December, 1980

C. PERFORMING ORG. REPORT NUMStH

7. AuTMCRft; B. CONTRACT Ocl GRANT MLkUEHfij

R. H. Nunn
J. W. Bloomer II

i. PERfO.'il-IING ORGANIZATION NAME AND AJQriESS

Naval Postgraduate School

Monterey, California 93940

10. PROuflAM ELEMENT. PROJECT TAS
AfcEA U WORK UNIT NUMi'tRS

II. CONTROLLING CFFICE NAME AND ADORES!

Technology Programs Management Office (Code 3205)
Naval Weapons Center
China La k e, CA 93555

12. REPORT DATE

January, 1981
13. NUMBER OF PAGES

84
TT MONITORING AGENCY NAME u AOORESSfl' (Jlltarmnt Irom Controlling Otitca) 15. SECURITY CLASS, (of thlo raport)

UNCLASSIFIED
I5a. DECLASSIFICATION' DOWNGRADING

SCHEDULE

Ift. DISTRIBUTION ST AT EMEN T (ol tnl » ilepor I)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ol lh» aii»(tacl cnr*r»d In Block JO, // dllttrant (tea Xvport)

18. SUPPLEMENTARY NOTES

U. KEY WOrtDS fContlnu* en raverao mid* 11 neatc&ry mnd Identify by block nu&b&r)

Gyro, Gyrodynamics, Tubular projectile, Obturator

30. ABSTRACT (Cnntinu* ot. t*r*t*a aid* it nxcmaoasry tend Identity by "lack numb*/)

When a ball with a concentric hole through it is suspended within a spin-
ning tubular projectile the ball will rotate in such a way that its hole is

aligned with the axis of spin of the projectile. The ball thus serves as an
automatic obturator—plugging the projectile while the two bodies are within
the gun barrel and rotating to open the tubular passage following exit from
the muzzle. The motion of the ball is gyrodynamic in nature and highly depen-
dent upon the external moments on the ball that arise because of its motion

DO hU "1" 1«73 EDITION O" 1 NOV C» li OBSOLETE
'J/N Q 10 3- Oi«- 6 60 1

UNCLASSIFIEDm S2CUWITY CL ' JSlf'ICATIOM Of VHIi n AlvE ('•T^t^t Uei, ~n<er*J)



UNLASSIFIED

( li C vj m T v CL*HI>'C*Tiqm Q> This »taif»»

relative to the spinning projectile.
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Experiments are described in which the general validity of the theoreti-

cal models (exact and linear) is demonstrated for cases in which there is

little or no aerodynamic load. The experiments, together with the linear
approximation, lead to a semi -empirical method for determining the effective
coefficient of sliding friction for such systems.

A model is proposed to account for aerodynamic loading and sensitivity
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of various design parameters upon systme performance. The linear approxi-
mation is proposed as a useful design guide when applied with due awareness
of its limitations. In addition, a design criterion is presented by means
of which it is possible to avoid designs that lead to operation in a

"hovering" region. Such operation leads to prolonged delays in ball opening
time. Application of the design criterion leads to ball/projectile
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SUMMARY

When a ball with a concentric hole through it is suspended within

a spinning spherical cavity the ball will rotate in such a way that its

hole is aligned with the axis of spin of the cavity. If it is mounted

within a spinning tubular projectile, the ball can serve as an automatic

obturator—plugging the projectile while the two bodies are within the

gun barrel and rotating to open the tubular passage following exit from

the muzzle. The motion of the ball is gyrodynamic in nature and highly

dependent upon the external moments on the ball that arise because of its

motion relative to the spinning cavity.

This report presents the results of an analytical and experimental

study to provide an understanding of such motions in as complete a sense

as is possible. The general equations of motion are formulated together

with appropriate mathematical expressions for the external moments. These

moments have their origins in the forces acting on the ball (gravity and

aerodynamic forces are considered) which, in the presence of relative

motion between the ball and the projectile, lead to sliding friction torques

Torques due to fluid shear are also considered but these are found to be

relatively insignificant.

Exact solutions are obtained using standard numerical techniques.

In addition, a linear form is developed and these solutions lead to use-

ful approximations that are valid over a broad range of operating condi-

tions.

Experiments are described in which the general validity of the

theoretical models (exact and approximate) is demonstrated for cases in

which there is little or no aerodynamic load. The experiments, together



with the linear approximation, lead to a semi -empirical method for deter-

mining the effective coefficient of sliding friction for such systems.

A model is proposed to account for aerodynamic loading and sensi-

tivity studies are conducted to determine the nature and scope of the in-

fluence of various design parameters upon system performance. The linear

approximation is proposed as a useful design guide when applied with due

awareness of its limitations. In addition, a design criterion is presented

by means of which it is possible to avoid designs that lead to operation

in a "hovering" region. Such operation leads to prolonged delays in

ball opening time. Application of the design criterion leads to a

ball/projectile design that is optimum with respect to ball opening time.

VI
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INTRODUCTION

BACKGROUND

As early as 1858, the potential benefits of tubular projectiles were

recognized for specific purposes. In that year, Joseph Whitworth (Whitworth

Threads) wrote about and included an illustration of the tubular projectile

in the section on Rifled Firearms of his Miscellaneous Papers on Mechanical

Subjects [I]
1

. The projectile devised by Whitworth was hexagonal, with a

circular hole, and he noted its particular "...effectiveness in perforating

elastic materials which prevented them from closing up." Whitworth further

observed that the tubular projectile, which utilized a wooden sabot, penetrated

deeper into masonry than any with which he was acquainted.

According to Charters and Thomas [2], the "Krnka-Hebler" projectile

was reported in the Allgemeine Schweitzerische Mil itarzei tung as having been

so successful that the Ordnance Department in the United States carried out

firing tests of caliber .30 tubular projectiles in 1894. A description of

those test firings and an updating of the results, performed by I.E. Segal, is

included in Ref. 2. In the 1894 tests, a vulcanized fiber sabot was used to

seal the projectile while in the barrel.

The purpose of the 1894 test was to compare trajectories of standard and

tubular projectiles. This was done by comparing the vertical drop on target at

a given range. Segal 's report indicates that the drag coefficients computed

from the 1894 results agree closely with those of Charters and Thomas [2],

even though the latter work was reported fifty years later (1944) and utilized

more sophisticated experimental apparatus.

lumbers appearing in brackets refer to the list of references



RECENT DEVELOPMENTAL STUDIES

The result obtained by independent researchers as to the relative merits

of the tubular projectile as an alternative to the conventional round are con-

tradictory. It seems as if there was as much research devoted to discrediting

the tubular projectile as there was to investigating its merits. Frank and

McLaughlin [3] have accumulated a great deal of data from various sources in an

attempt to "objectively compare" the merits of the tubular and "conventional

shapes". The authors concluded that the tubular has no particular advantages

over "well designed" conventional projectile shapes. Their findings disagree

with many of those discussed in the following sections.

Range Tests

Winchenbach, Daniel and Edgar [4] conducted range tests of six configurations

of tubular projectiles and concluded that the drag coefficients were significant-

ly lower than the standard High Explosive Incendiary (HEI) projectile of the same

caliber. Only projectiles of the same bore size were compared. The experimental

models were constructed from standard 20-mm ammunition by boring various hole

sizes to obtain "...area ratios (At/A-j) of 0.7, 0.8, 0.9, and 1.0." Where A t is

the throat area and Aj is the inlet area of the projectile. The drag coefficients

of the projectiles with area ratios of 0.8, 0.9, and 1.0 were less than half that

of the projectile with area ratio of 0.7. The higher drag coefficient was attri-

buted to the underexpanded flow at the exit resulting in high base drag.

Range tests conducted for the concept evaluation of the 20-mm tubular pro-

jectile for the Vulcan Weapons System [5] showed that the tubular projectile per-

formed better than the standard HEI round, with lower drag, shorter time of flight

for a given range (30 percent shorter at 1000 meters, 40 percent shorter at 2000

meters) and similar dispersion characteristics on target.

Recent tests at the Naval Weapons Center, China Lake, California of the Ball-

Obturated Tubular Projectile (B0T) have shown a definite advantage in that the low



drag of the tubular projectile means slower retardation of velocity and hence

a higher terminal kinetic energy [6]. (The BOT is the object of this investi-

gation and will be described in detail in later sections of this report.)

Target Impact Tests

The higher the energy delivered to the target, the greater the damage.

Since kinetic energy is directly proportional to the first power of mass and

to the square of the velocity, if a tubular projectile has relatively less mass

this maybe compensated by a higher muzzle velocity. However, a reduction in

mass to obtain higher muzzle velocities may not be necessary, depending upon

the imposed performance criteria.

Target impact studies have been carried out with various projectile con-

figurations and target types. Rhethorst, et.al. [7] conducted impact studies

of 7.62-mm tubular projectiles on helmets. Tests showed that even with the

same energy of impact, the tubular projectile penetrated further.

Kitchen and Keeser [8] conducted studies for the Air Force on the impact

effectiveness of tubular projectiles on simulated aircraft fuel cells. These

tests were conducted with steel and depleted uranium (DU) tubular projectiles

and standard 20-mm HEI projectiles. The projectiles were fired at double

panels at varying degrees of obliquity. Of the forty-seven tests of the steel

tubular projectiles which impacted the target, twenty breached the rear panel

when fired at angles up to 70°. The DU projectiles breached the rear panel

even at angles of 85° and fires were started in three of the five DU tests.

The standard M56 HEI projectiles failed to breach the rear panel in each of

five firings even though severe damage to the front panel and two fires occurred

Brunsvold and Kalivretenos [9] conducted a program to test the effective-

ness of the tubular projectile against a simulated cruise missile warhead.

Tests were conducted with 20 and 40-mm rounds. Results of those tests are

classified, and therefore not presented here. It was noted [9] that due to the

3



improved stability characteristics of the tubular projectile, only about

half the spin rate need be imparted by the rifling in the barrel to obtain

the same stability as a standard projectile, with obvious implications with

respect to wear.

Weapons System Compatibility

For the tubular projectile to be practical, it must be able to interface

with existing weapons systems. Reference 5 is a report of the 1978 tests

conducted by the Army to evaluate the tubular projectile in the Vulcan weapons

system.

Because the nose of the tubular projectile is flat compared to the stan-

dard projectile (See Fig. 1), it "...did not lend itself to chambering in the

weapon." Personnel safety required that the weapon be remotely operated and

therefore only the surface-to-surface performance comparison was made.

The dispersion on target improved for the tubular projectile at ranges of

from 700 to 2000 meters. The dispersion varied on the average by only 0.2

mil over the entire range spectrum between the tubular and conventional HEI

projectile. However, at 2000 meters, the tubular was better by 0.4 mil. The

tubular projectile had a 30 percent shorter flight time at 1000 meters and a

40 percent shorter flight time at 2000 meters than the conventional HEI

projectile.

Results of firing of 25-mm and 30-mm tubular projectiles from the Oerlikin

KBA and 6AU-8/A respectively were reported in part in Ref. 3 Figures comparing

Line-of-Sight Penetration Capability vs. Range for a conventional spinner con-

figuration based on the AR-2 shape, a finner configuration based on the F10

shape, and a tubular projectile were shown. The tubular projectile was shown

to be inferior in both instances. The report does not indicate the degree of

compatibility the tubular configuration has with the guns used.

Internal Shock Wave Considerations

From photographs of tubular projectiles in flight [4] and during wind



tunnel testing [7], various shock patterns have been observed at the inlet

region and in the wake. The photographs of Figs. 2a-c show the BOT and the

conventional projectiles in flight. The sabots used in Refs . 4 and 7 were

of the pusher type consisting of a simple base plug. The detached bow

shock seen in the photograph of the standard projectile (Fig. 2a) is similar

to that of the tubular projectile shown in Fig. 2b with the tubular passage

closed (and in Ref. 4 with the sabot attached). With no blockage of the

internal passage (Fig. 2c) there was no detached bow shock, with only

attached oblique shocks emanating from the lip of the projectile. This latter

case allows the possibility of four other internal flow/shock configurations.

(1) A normal shock standing at the entrance to the projectile;

(2) A normal shock standing at some intermediate position in the

channel ;

(3) A system of oblique shocks present in the channel;

(4) The channel is devoid of shocks and the flow is shock-free

through the channel

.

Reference 10 contains a discussion of the shock patterns and the

various conditions leading to their existence.

PURPOSE OF STUDY

The results of tests and experiments previously mentioned show, for

the most part, definite advantages accruing to the tubular projectile over

the conventional projectile primarily in the area of lower drag (approximately

1/2 to 1/3 of conventional [8]) which allows a flatter trajectory and shorter

time of flight for a given range [5]. With reference to air combat and

anti-missile defense both from a Surface- to-Air and Air-to-Air standpoint,

these features are definitely worth further study.

The problem seen from the air platform is that of the discarding sabot

or pusher. The solid [4, 5, 7,] or split [8] disk is effective and reliable,



Figure 1. 20-mm Ball Obturated Tubular Projectile (30T)

,

components, and conventional 20-mm projectile.
(Photograph courtesy of NWC, China Lake)

.

Figure 2a. Standard 20-mm projectile in flight with
detached bow shock. (Photograph courtesy
of NWC, China Lake)

.



Figure 2b. 30T with passage blocked resulting in
detached bow shock. (Photograph
courtesy of NWC, China Lake)

.

Figure 2c. BOT with no blockage in passage; only attached
oblique shocks emanating from the lip of the
projectile. (Photograph courtesy of NNC, China
Lake)

.



however, the possibility of ingestion in the aircraft engines prohibits

their use. Rhethorst et al . , in Ref. 7 illustrates a number of sabot/

obturator designs for use with the tubular projectile, but these are also

of the discarding type. They also investigated the possibility of using a

consumable sabot [11] which would be burned up as the projectile was tran-

siting the barrel and would be completely consumed as it exited the barrel.

The most recent development has been the BOT which was designed at

NWC China Lake, California [6]. The ball obturator has been bored with a

hole the same diameter as the hole through the projectile. When loaded,

the ball is supported inside the projectile such that the axis through the

hole in the ball makes an angle of approximately 90° with the axis of the

hole through the projectile (see Fig. 3). Gas pressure from the burning

propellant holds the ball obturator fixed with respect to the projectile

(as well as to the ball). Upon exiting the barrel, the propellant gas

pressure is released and, in its place, forces due to aerodynamic effects

come into play. At that time a complex force distribution acts on the ball

to cause it to change orientation inside the projectile in such a way as to

align the holes. Inertial forces then dominate to maintain this alignment

so that the projectile remains fully tubular. There are no separating

parts and the opening process is automatic.

The purpose of the study reported herein has been to analytically predict

the motion of the ball obturator as a function of time. In support of this

purpose, an experimental apparatus was designed and built to simulate the

motion of the obturator in order to provide physical evidence of the accuracy

of the model and to gain insights into the nature of the motion.



Figure 3. Sketch showing dimensions and positioning of the ball

obturator within the spherical cavity.



ANALYSIS

DEVELOPMENT OF THE EQUATIONS OF MOTION

The ball obturator is a rigid body of revolution with a system of

coordinate axes fixed to the ball (body-fixed axes) having its origin at

the mass center of the ball (Fig. 4). These axes are designated x, y, and

z, where z is the axis through the hole in the ball.

To describe the motion of the ball relative to the projectile an

inertial frame of reference is defined with axes designated X, Y and Z

with its origin also at the mass center of the ball. For this analysis

it is assumed that the projectile is constrained to rotate about the Z-axis.

Because the motion of the ball with respect to the projectile is of special

interest it should be noted that components of the ball angular velocity

with respect to the X and Y axes are also relative to the projectile,

whereas the component with respect to the Z-axis must account for the pro-

jectile spin.

The motion may be described by Euler's Modified Equations of Motion

for a rigid body of revolution about a fixed point. These are given in

Thomson [12] as:

Aw + (C-A)co cu = M (la)12 3 1

Aw + (A-C)co a) = M (lb)
2 13 2

Cw = M (lc)
3 3

where

A = Mass moments of inertia about principal axes

perpendicular to the z-axis.

C = Mass moment of inertia about the principal

axis through the hole (z-axis).

10



>z

Figure 4. Illustration of coordinate systems and symbols used in the

analysis .

11



w , co , a) = Angular accelerations about the body-fixed axes
1 2 3

x, y, z respectively.

00,00,00 = Angular velocities about the body-fixed axes.
1 2 3

M , M , M = External moments acting about the body-fixed
1 2 3

axes.

The mass moments of inertia for the particular case at hand

(sphere of radius R with concentric hole of radius r) are given by:

A =i^*l &(1-? 2
)
3 ' 2 (3f 2 + 2) + (1 - r

2
)

5 ' 2
(2)

C = l^Rl (1 .p2 )3 /2 (3
~
2 + 2) (3)

where r = r/R.

The symbol X is introduced here to denote the relative difference

between the two moments of inertia. That is:

, C-A
X = T~

From Eqs. (2) and (3) it is seen that

5r 2

A = ~ (4)
r
2 +4

and since - r - 1, X lies in the range - X - 1.

With X so defined, Eqs. (1) may be rewritten:

oo + Xco oj = M /A (la)
1 2 3 1

oj - Xcu oj = M /A (lb)
2 13 2

oi = M /C (lc)
3 3

The orientation of the ball at any time may be described by

three angles; 9, <}> and if- These are known as Euler angles and their

relationships to the coordinate axes already described may be seen in

Fig. 4. The components of angular velocity oj
, go and go in terms of

1 2 3

the Euler angles are given as [12]:

12



co = ^sin6sin$'+ 9cosd> (5a)
i

co = $sin9cos<f> - 8sinc{) (5b)
2

co = J + 'Jcose (5c)

By differentiating Eqs. (5) with respect to time, the angular

accelerations, co , co , and co may be obtained as
1 2 3

co = iJ>sinesin<J> + tfi(ecos8sin4> + <J>sin9cos<}>) + 9cos<J> (6a)

-eisincf)

co = ^sin8coS(|) + <J(9cos9cos<£ - <J»sin9sin<}>) - 8sini|) (6b)
2

-9<Jcoscf>

co = $ + 4;cos9 - ij>9sin9 (6c)
3

Combination of Eqs. (1), (5), and (6) yields the Euler equations

in terms of the Euler angles:

ipsin9sin<J) + i(9cos9sin<f> + 6sin9cosc}>) + 9coscf> - (7a)

9|sin<£ + X(ifsin9coS(|> - 9sincj>) (iJcos9 + }) = M /A

ipsin8cosc{) + i(8cos9cos<{> - Jsin9sin4>) - 9sin<J> - (7b)

e^coscj) - X(isin9sin<j) + 8cos0) (iJcos9 + Jj = M /A
2

ipcos9 - <j9sin9 + cf>
= M /C (7c)

3

If Eq. (7a) is multiplied by sine}) and Eq. (7b) by cos<j>, and the

results are then added, we obtain

PS " - ~

ii;sin9 = (R /A)sincb + (M /A)cos<f> + 9 [(X + 1)<£ + (X-l)ifcos9]
1 2

The overbar notation is introduced here to denote dimensional time-

dependent quantities. These will subsequently be non-dimensional ized
through the use of the initial projectile spin rate.

13



Similarly, if the multiplication is reversed and the results are

subtracted, we have

9 = (M /A) cos* - (R /A)sin<J> - ij>sin9 [(A + 1) $ + AiJcos9]
1 2

Simply rewriting Eq. (7c) we have

.- -- «

<j>
= R /C + $6sine - ipcos9

3

These are the basic governing equations for the motion of the ball

in terms of the Euler angles. They are second order ordinary

differential equations, nonlinear, and strongly coupled. Before

proceeding further, we shall introduce the convenience of non-

dimensional ization of the time-dependent variable. This is ac-

complished through the use of go , the initial rate of spin of the

projectile. The equations of motion are unchanged in form except

for the terms involving the external moments.

Thus, with the definitions

M = R /Aoj
2

M = R /Ao)nn
2

, M = R /Coo
2

1 1 P° 2 2 P° 3 3 PO

we have

lysine = Misincj) + M 2 cos<J> + 9 [(A + 1) $ + (A-l)icos9] (8)

9 = Mjcos* - M 2 sin<f> - ijsin9 [(A + l)<f + Ai£cos9] (9)

> = M 3 + ij>9sin9 - ^cos9 (10)

where i = i/^^ = ^/w
pQ

2
, etc.

The integration of Eqs. (8) - (10) proceeds from a condition

in which the ball is fixed to the projectile and spinning with it.

The initial values of the precession angle ty and the spin angle
<f>

14



are arbitrary and are set to zero for convenience. The appropriate

initial conditions are, therefore:

6(0) e
o

6(0) =
(n)

4>(0) = <J(0) =

tpCo) = o {(o) = l

The central problem yet to be addressed is that of the specification

of the external moments M , M , and M or, in non-dimensional form,
1 2 3

M , M , and M .

1 2 3

EXPRESSION OF THE EXTERNAL MOMENTS

The interaction of the ball with the cavity in the spinning

projectile is dominated by torques arising from the relative motion

between the two bodies. These torques will be opposite to the direction

of the relative velocity so that we may begin by specifying that:

M = -1 M (12)

where 1 = o> / j oo
j

= unit vector in the direction of the relative

angular velocity

We have considered torques due to both fluid shear and sliding friction.

Torque Due to Fluid Shear, M^

Nakabayashi [131 has recently reported the results of a series of

experiments to determine the fluid shear acting in the gap between two

concentric rotating spheres. Although the details of the flow are

15



extremely complex [14], the results of Nakabayashi show that the

data are well correlated by:

C = 8tt(1 + e)/(3eRe) for laminar flow (13)

and C = 0.053[1 + (7/4)e]/{e[1 - (3/2)elRe°
' 2S

) for turbulent flow,

where C = M
f
/(pR 5

dJ
2
), e = (h/R)«l, and the Reynolds number is given

as:

Re = R
2
oJ
r
/v.

From [13] it is also possible to estimate a transition Reynolds

number:

Re = 70s"
1,5

In our experiments (both real and numerical) we have found that relative

angular velocities in the range of interest are well below those

necessary to stimulate turbulent flow in air so that Eq. (13) is

adequate for our purposes. When Eq. (13) is cast in a suitable form we

have:

M
f

= 8ir(l + £)yR 3w
r
/(3e) (14)

Torque Due to Sliding Friction, M

In the case of sliding friction the magnitude of the applied torque

may be written

H
s

- u
s

F
n

r
m < 15 )

where F is the normal component of the resultant of all forces acting

upon the ball and r is the moment arm extending from the point of con-

tact and directed normal to the vector of relative angular velocity.

Since the point of contact must be on the surface of the ball,

the position vector of this point, P, must have a magnitude of the

ball radius R. Figure 5 illustrates the geometry for cases to be dis-

cussed in which multiple points of contact are distributed along a line.

If y and $ are the location angles of a point of contact, as illustrated

16



Figure 5. Sketch illustrating the location of points of contact between
ball and projectile.
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in Fig. 5, then the position vector may be written

P = R(e sin$cosy + e sin3siny + e cosB)

where e , e , and e are unit vectors for the inertia! coordinates.

The vector of relative angular velocity may be written,

co = e co + e co + e co ,
:Y n x rx v ry n z rz

and, since P • co = Rco cosn , we have

n = cos" 1
[7- (co singcosy + co sinBsiny + u cosg)] (16)

The angle n is that subtended by the position vector P and

the relative angular velocity vector co so that the moment arm r
r m

r = Rsinn (17)

is given by

r = R
m

and from Eq. (16) we obtain

r = R [l-(o^. sinBcosy + co sinBsiny + co^cosS) 2
]

12

(18)

co
—*-

r co gj
r r

With the point or contact specified the moment arm is therefore

determined and, together with the normal force F , leads to the torque

due to sliding friction, Eq. (15).

At present it is impossible to exactly specify the vector of the

forces applied to the ball. We have therefore examined two special

cases that are relevant to the investigation. These are:

1. Motion under a gravity load.

2. Motion under an axial aerodynamic load.

Gravity load . In this case the load is the weight, W, of the

ball and is applied directly downward. The point of contact is at the

bottom of the cavity so that 3 = ir/« and y = tt (that is, P = -Re ).

The moment arm is given by

rmn = R[l - (a) /co )

ztmg L rx r

18



and the magnitude of the moment is

I

sg
M_ = y s WR[l-(wrx

Ao
r

)

2r (19)

Which is applied opposite to the relative velocity vector in accordance

with Eq. (12).

Axial aerodynamic load . The aerodynamic load acting upon the

ball will be a complex function of the ball orientation. During the

opening instants, however, when the ball blocks the tubular projectile,

the resultant of the pressure forces on the ball will act along the axis

of the projectile. This interval is of importance, of course, since it

will constitute a significant part of the ball-opening delay. At lower

values of 8, when there is significant flow through the ball, the specif-

ication of the net aerodynamic force will require further detailed analysis

It is important to note further that when the ball is partially open there

may be a significant moment acting upon the ball, as well as a centrally

directed force. An understanding of the nature of the aerodynamic force

under partially-open conditions is a major goal of continuing research.

For the case of an axially oriented applied force, the ball will

be forced against the aft rim of the hole in the projectile. The exact

number and location of the contact points is difficult to predict and

will, in fact, depend upon projectile manufacturing variations. However,

any effect of arbitrariness in contact point specification is "blurred"

by the high-speed rotary motion and errors resulting should be random

and therefore of little influence on the overall motions. This hypo-

thesis has been verified by computer experiments. In selecting the number

of contact points and their location, we have assumed the first stable

position, that is, three contact points. In addition, we have assumed

that these points are symmetrically dispersed along the line of contact.
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The axial aerodynamic force, F , is evenly balanced among the
a

contact points so that at each point the normal force is given by

F = ^a cos3
n

3

and, since the contact points lie along the rim of the projectile

hole, 3 = sin" 1 r/R. (see Fig. 5). The moment due to sliding friction

in this case is given by

M
sa y

s
(F

a
/3)cosB l

=
Crm ). (20)

where 3 = sin" 1 (r/R) and the three values of r are given by Eq. (18)

with the angle y set at 0, 2tt/3, and 4tt/3.

The aerodynamic force most appropriate for use in Eq. (20) will

be that due to a pressure distribution over the ball and behind a normal

shock standing at the projectile entrance, (see sketch below)

^MTT
CO CO

The net force on the ball will be

F = Trr
2
(P - P )

a 21
Since the actual base pressure P

x
is much less than P2 and, in any case,

is unknown, we assume ambient pressure here. That is, P, - P . The face

20



?2 will lie somewhere between the static and the stagnation pressure

existing behind the shock. The difference is small (about 7%) in the

range of Mach numbers of interest ( M^ = 3 to 5) and will likely

approach the static pressure because of spillage behind the shock and

recirculation within the cavity ahead of the ball; that is, there will

be little or no pressure recovery in the cavity. The assumption of

static pressure is adopted for these reasons as well as the fact that

this is a conservative assumption in terms of ball opening times (higher

pressures lead to shorter opening times). Thus, the approximate ex-

pression for the pressure P 2 is

P 2 = P [1 + l^s- (M 2 - 1)]* oo l
k+1 °°

and for the aerodynamic force,

F
a

= ^ 2P„^J "I)] (2D

Equations (20) and (21) provide the necessary information for determining

the torque due to an axial aerodynamic load and this torque is, again,

applied in a direction opposite to that of the relative velocity vector.

Consideration of the Relative Angular Velocity Vector

The three body-fixed components of the relative velocity vector are

given by see Eqs. (5) :

w = (ip - oo )sin9sin<J> + 9coscf)

u = [tL - oon ]sin6coS(j) - 9sin4> (22)
i? P

0) = (lj> - 03 ) cos 9 + I
3 1 v

According to Eq. (12), then, the components of the external moments

may be written:

M •
, .

M = - -s r=— [W - oOsinBsirKj) + 9cos<J>l
i ^po'^Y P

M = " IT;—Z7T" M " tojsin9cos<i> " 9sin<j>] (23)
2 Aw

po to
r

P

M = -
r 2 [({ - 03

p
)cos9 + <f]

3 LoJpo 03
r

Y
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The terms involving these moments in the equations of motion may

now be written

M sin<£ + M cos;}) = -r-

—

%*- [(ip - a) D )sme]
i 2

Aa)po w
r

V° s * " M
2
sin*

= A^; §
(24)

M = as in Eq. (23).
- 3

The value of R in these expressions are given according to the table

below:

Source of moment Appl icable Equations

Fluid Shear, M
f

(14)

SI iding Friction

Gravity only, Msg (19)

Axial Aerodynamic, ft (20, 21)
sa

It is appropriate to combine the fluid shear moment with either

of the sliding friction moments. In most cases analyzed, however,

fluid shear moments are several orders of magnitude smaller than

those due to sliding friction. Since the gravity and axial aerodynamic

loads are each dependent upon specified points of contact, it is not

appropriate to combine them without determining a point of contact that

is correct for the combination. In cases of practical interest, however,

the aerodynamic load is either absent or, if it is present, it completely

dominates any effects due to gravity. Consider, for instance, a sea level

launch under the following conditions:

r = 4.7 mm

R = 7.9 mm

fL = 3.0

Under the approximation that the moment arms are about equal to the sphere

22



radius for both gravity and aerodynamic loads, the ratio of moments

for the two cases is

M
sa

F
a

For the stated conditions with a steel ball, W =.08 N (about 0.4 lb.)

and F - 65 N (about 15 lb.) so that the aerodynamic effect is clearly
a

dominant.

It should be noted, in closing this section, that the main

weakness in the analysis is due to uncertainties in specifying the

aerodynamic load. If this load (force vector or centrally applied

force plus moment) is known, the methods given to predict its affect

upon the motion are quite general.
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EXACT SOLUTIONS FOR TYPICAL SYSTEM PARAMETERS

Equations (8) - (10), subject to the initial conditions

[Eq. (11)] have been solved for both the gravity-only case and the

case of an axial aerodynamic load. The gravity-only case is of special

interest because it provides theoretical predictions for the experimen-

tal program (described in a subsequent section). The aerodynamic load

is, of course, the practical case for the tubular projectile.

The appropriate equations were coded for solution on the digital

computer. The general flow of the solution method is as follows:

1. Set initial conditions and specify system parameters.

2. Calculate necessary constants (ball weight, moments of inertia,

flight level pressure, etc.).

3. Calculate oj , oj , oj from current Euler angles [Eqs. (5)].
1 2 3

k. Calculate body-fixed components of relative angular velocity

[Eqs. (22)]. •

5. Convert relative angular velocity components to inertia! axes

(oj , oj , oj ) .v rx' ry' rz'

6. Determine moment arms and external moments as required (see

table, p. 22).

7. Determine moment terms, for use in equation of motion [Eqs. (24)]

8. Determine J, 9, and $ [Eqs. (8) - (10)].

9. Integrate for new values of {, 6, i, and ty, 6, and
<J>.

10. Return to step 3, until 9 is sufficiently close to zero.

The method of integration employed (step 9 above) was a fourth-order

Runge-Kutta scheme with a step-size automatically adjusted to control

numerical precision.
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Consideration of Projectile Angular Velocity .

Two system constraints have been investigated in the analysis.

In the first case we have invoked the constraint of constant pro-

jectile spin rate and, in the second case, we have required a con-

stant system (ball plus projectile) kinetic energy. Since the in-

ertia of the ball is small relative to that of the projectile (a

factor of about 20) the decrease in projectile spin rate necessary

to maintain constant system kinetic energy during the ball motion

is rather small (typically about 2%) and the two cases are not sig-

nificantly different. The computer solutions shown here (so-called

"exact" solutions) are for the case of constant system kinetic energy.

Gravity Load .

The system parameters for this case were set to correspond to

the conditions of the experiments to be described later. These para-

meters are summarized in Table I.

Figures 6 and 7 illustrate the nature of the motion predicted by

the exact solutions for a representative set of the physical parameters.

In Fig. 6 the angle of tilt (9) relative to the cavity spin axis is

shown as a function of time for various rates of spin. At relatively

high rates of spin the motion appears to be quite linear with a nearly

constant rate of nutation (9) developed early in the motion. At lower

rates of spin, however, there is an initial period during which the mo-

tion is nearly stable, followed by a rapid decrease in the tilt angle.

The time required to reach a given value of is therefore a function of

the angle itself and is illustrative of the complex interactions between

the inertia! tendencies of the ball and the dissipative torques due to

friction. Figure 7 is included to show the variations in the Euler angle

rates for a typical case. When the ball is released its rate of precession
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TABLE I

Ball Characteristics and Experimental Conditions - Gravity Load

Ball Designation Mod Mod I

Physical
Characteristics

R, m

r, m

C, Nms
2

X

P. kg/m

Experimental
Conditions

y» Ns/m
2

^s
(note l

)

£

V
6*,

deg

deg

M, Nm (note 2)

7.899 x 10' 3
7.925 x 10" 3

4.722 x 10" 3
1.984 x 10" 3

3.126 x 10' 7
4.029 x 10" 7

0.410 0.077

7.67 x 10
3

7.75 x 10
3

1.917 x 10" 5
1.917 x 10" 5

0.51 0.30

6.43 x 10' 5
6.43 x 10" 5

87.25 89.5

36.71 14.50

2.08 x 10~ 4 2.18 x 10" 4

Empirically determined, see text.

2
Computed from Eq. (39).
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(tJi) increases above its initial non-dimensional value of unity and,

concurrently, a retrograde spin is developed. For the conditions of

Fig. 7 (o)p = 400s" 1
), the mean value of nutation rate is fairly constant

with acceleration rates that are initially large and rapidly damped.

Additional results for case of gravity load are discussed in con-

juntion with the linear approximation and experimental results.

Axial Aerodvnamic Load.
u ...

Figures 8 and 9 present similar results for the motion under an

aerodynamic load. The system parameters for these figures are those

of the "baseline case" listed in Table II.

The nature of the response is seen to be similar to that of the

gravity-only case. In particular, the existence of a hovering mode is

apparent at low projectile spin rates. This phenomenon points up some

design limits and is the subject of discussion in a subsequent section.

Sensitivity studies were conducted for the aerodynamic load and these

also are discussed later.
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TABLE II

Ranges of Design Variables - Aerodynamic Load

Design Variable Minimum Basel ine Maximum Figure No.
1

R, mm base! ine 7.90 39.5 24

A, Nms
2 2.24xl0" 7 7.00xlO

-It

r/R
A, Nms 2

0.400 7

3.20x10'
0.598
2.24xl0"

7
0.800
l.OOxlO" 7

25

X 0.19 0.41 0.69

P , kg/m 3

A, Nms
2

3.10xl0 3

8.96xl0' 8

7.75xl0 3

2.24xl0" 7
1. 24x10"
3.58xl0' 7

26

y
s

0.71 0.855 1.000 27

M
00

3.00 3.50 5.00 28

P , atm
00 ' 0.1 1.0 baseline 29

V- s_1 6.91xl0 3
1. 20x10" 1. 36x10* 8

9
o

, deg 70 85 baseline 8, 10

1 Figures cited are those in which the given design variable is

investigated over a range of values.
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x 130,000

115,000

v 100,000

o 85,000

D 70,000

15.0

0.0 3.0 6.0 9.0 12.0 15-0 18.0

T, ms

(b)

Figure 8. Exact solutions for vs t; baseline projectile, (a) High
projectile spin rates; (b) low projectile spin rates.
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LINEAR APPROXIMATIONS

From Figs. 8a and 8b it will be noted that there is a marked change

in the nature of the ball motion at a projectile spin rate of about

7300 s'
1

(70,000 rpm). At rates above this value (Fig. 8a) the ball motion

appears to be quite linear; that is, the response of the ball to the friction-

al torques approximates one of a second-order linear system responding to a

combined ramp and step input (both of which are negative). Such a response

is given by

6 = e
Q

+ D + R(t - 2;)... (25)

+ exp(-ct) (RsinCO-c 2 )^ + *
R
] - Ds1n[(l-c 2 )*t + *

D
)]} /^-z, z

)

h

where
Q

= $
R
/2 = tan' 1

[(l-c
2 )*5

/?]

The parameters of the response, to be derived below, are given by:

C = M/2, D = -(A/2)sin20 , and R = MD/(A + 1)

The method leading to the linear approximation is a perturbation upon the

equilibrium solution to Eqs. (8) - (10) under torque-free conditions.

DEVELOPMENT OF THE PARAMETERS OF THE LINEAR RESPONSE

Equation (25) satisfies the initial conditions on and is the solution

to

6 + 2^6 + = 9 + D + Rt (26)

From the equations of motion for and the associated relation for external

moment [Eqs. (9) and (24)], a comparison of the coefficient of the tilt ve-

locity, 8 , leads to the damping coefficient:

C = M/2 (27)

where M = M/Aoj go .

With this definition of z, , combination of Eqs. (9) and (26) leads
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to

(9 - ) - (D + Rt) = 4>sin6[(X + 1){ + Xijcose] (28)

The response specified in Eq. (25) indicates that the function described

in Eq. (28) is oscillatory in nature with the mean value decaying exponenti-

ally from an initial value of -D to an asymptotic final value of -2R£. That

is, the mean value (about which the oscillations occur) is given by:

[(9 - 9 ) - (D + Rt)] = -2Rc - (D - 2Rc)exp(-ct)u\ q j \ /Jmean * w r

In the limiting case of vanishingly small external moments this expression

simplifies to a straight-line response with slope R so that an evaluation

of this rate of decay should emerge from an investigation of the solution of

the equations of motion for the case of zero external moments.

If the external moments are removed from Eqs. (8) - (10), a solution

of the following form is obtained:

(A + l)i + Xcos9
Q
=0, 9

o
= 0, i

Q
= 1 (29)

The subscript ( ) is used here to indicate quantities pertaining to this

solution. Perturbations to this solution, designated by subscript ( ), are

defined such that

i|» =
tyQ

+ Mip

p

4) = t}>

o
+ M<f>

p
(30)

0=0 + M9
o p

The base quantities (subscript o) must satisfy Eq. (29) and the perturbed

quantities (no subscript) must satisfy the initial conditions, Eq. (11).

The appropriate initial conditions for the perturbations are, therefore

J (0) =

i (0) = -} /M = -Xcos0 /M(X + 1) (31)
p O

8
p
(0) = 6(0) =
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When Eqs. (29) and (30) are inserted into Eqs. (8) and (10), the fol-

lowing approximate relationships are obtained:

Mifi sine - T, - M9 cos9 + 0(M 2
)r

p o 1 p o
v '

M$ = T + M0 sine - M4> cos9 + 0(M 2
)

p 2 p o
y
p o

;

where the torque terms T, and T
?

are obtained from Eqs. (24), (29), and (30)

T, = -M(Mi sine ) = 0(M 2
)

1
r
p o

T
2

= -M} /(A + 1) + 0(M 2
)

Neglecting terms of order M
2 and smaller, we have

ip sine = -9 cos9
p o p o

$ = -i /(A + 1) + 9 csc9T
p

T
o p o

The first integrals of this set yield

<f>
= -9 cot9

P P o

J -J t/(A+ 1 ) + 9 csc9Y
p

Y
o

;

p o

(32)

<J>
/M

or, from Eqs. (30)

{ = 1 - MO cot9

(33)

<t>
= -M(p

Q
t/(A + 1) + M9

p
csc9

o

When Eqs. (29) and (30) are substituted into Eq. (28) we have, to the first

order:

Msin9 [(A + 1)<J + AtJ cos9 - A9 sin9J = M9 n - (D + Rt)
o p p o p o p

and with Eqs. (32) this becomes

(A + l)sin9 [M<J t/(A + 1 ) + i
Q
] = D + Rt

It follows that:

D = (A + l)0
o
sin9

Q
= -(A/2)sin29

Q

R = MD/(A + 1)

(34)
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In order to evaluate the non-dimensional moment parameter, M, it is

necessary to develop approximate relationships for co and for the moment

arm r to be used in the previously derived expressions. Under the con-

straints of the linearization described here (M«l and |D|«1), the

relative angular velocity is approximated by [Eqs. (22)]:

°V '
°°3r

"
^o

=
" XcosV( x + !)

The principal component of the relative angular velocity is therefore

along the spin axis of the ball and, since the ball is initially near

6 = tt/2 (required for |D|«1) the components along the inertial axes are,

approximately,

co
rx

/a)
r

- simj,
o

wryA * cos
^o

co
rz/

o)
r

-

Since \b is a function of time (even though i = constant = 1 in ther
o o

linearization), suitable mean values for the moment arm relationships must

be obtained. In the case of a gravity-only load we have

r = R[l - (u /u )

2 ~\
h
= Ricos^

|mg L rx r ' o

the absolute value being necessary to preserve the positive nature of the

moment arm. For the mean value,

i r
2Tr

r = n— / r d\b
mg 2tt J mg ^o

we have

1 f
11

2R f^
/2

2tt yn ' o '

Y
o it 7n o

v
o

TT/2

r
mg

'0

and

r
mg

= (2/ir)R (36)

For the case of aerodynamic loads, we have from Eq. (18)
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r
ma

= R[1 " sin2 2sin
2
(^

o
+ y )t

where the selected values of locate the contact points and 3 = sin
_1

(r/R).

In the mean, then

F
ma =-/ V - sin

2
esTn

2
(^ +Y)rd^

o

and

r
ma

= (2/tt)R E(3) (37)

where E(3) is the Complete Elliptic Integral of the second kind.

With these values for the moment arms it remains to evaluate the line-

arized forms of the external moments. In the case of fluid friction we

have, from Eq. (14)

,

M
f

= [8tt(1 +£)yR 3<y(3s)]/AcL
r
co
po

or

M
f

= Ml +e)yR 3 /(3-AWpo ) (38)

Note that no linearization is required for this non-dimensional moment para-

meter. For the case of gravity-only loads, from Eq. (19)

M
sg

= ^WR(2/7T)]/Ad)
r
o)
po

or

M = 2u
$
WR(A + D/ttAXco

2 cos6
Q

(39)

For the aerodynamic load Eq. (37) gives, for three contact points symmetrically

d i s po s ed

,

3

.S
1

f
m

. = 3(2/tt)R E(3)

and from Eq. (20)

or

M
sa

=
Vi
s
F
a
R(2/iT)E(s)cosS/Aw

r
a)

M = 2y F R(\ + 1)E(3)cos3/ttAAco 2cos6
rt

(40)
sa s a po o
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The fluid friction term, M
f

, may be added to either the gravity term, M ,

or the aerodynamic term, M , to obtain M and the related parameters

[C, R, and D from Eqs. (27) and (34)].

RESULTS COMPUTED FROM THE LINEAR APPROXIMATIONS

Figure 10 illustrates the linear approximation in comparison with the

exact solution for two initial values of 9 under fluid friction and gravity

load. (As mentioned previously, the effects of fluid friction are generally

negligible. This observation also applies in the linearization.) Figure 11

gives similar results of the case of an axial aerodynamic load on the ball.

It is seen from both figures that good approximations to the exact solution

are obtained from the linearization. The approximation departs from the

exact solution as time passes and the ball angle decreases. This is to be

expected since the terminal phase of the ball motion is not adequately

modeled in the linearization. Nevertheless, the linear model provides valu-

able insights into the nature of the motion and its most influential parameters

It should be noted again that at the lower angles, when an observer would

see a sizable opening through the projectile when sighting along its axis,

both theoretical models are subject to the possibility of considerable error.

The is especially true in the aerodynamic case because of uncertainties in

the load description at partially-open conditions.

The results of the linear approximation are discussed further in con-

nection with the experimental program to be described in the next section.
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EXPERIMENTATION

EXPERIMENTAL APPARATUS

An experimental system was designed to simulate the spinning BOT

under the influence of a gravity load. The apparatus consisted of a

compressed-air-driven spin-up rig, optical-timing mechanism, air manifold

and associated piping, tubing and electronics.

The obturator was fabricated from a standard 5/8-in. diameter chrome-

steel (52100) bearing ball. The ball was annealed to allow machining and

then bored along a diametrical axis. The bored ball was then mounted in a

bakelite metalographic specimen mount. The mounted ball was placed in a

milling machine and a flat was machined in the bakelite at a specified angle

relative to the axis through the hole in the ball. This flat was then used

as the polishing plane for metalographic specimen preparation. A small flat

spot was polished on the obturator to provide a highly reflective surface at

a known orientation relative to the z-axis of the obturator (Fig. 12).

After removal from the bakelite mount, the obturator was placed in a

three-piece, lucite housing (Fig. 13). The mating ends of the two hollow in-

ner cylinders were each machined with a 5/8-inch spherical end mill to a depth

of approximately 5/16-inch. When mated, a spherical cavity was formed to

accomodate the obturator. The third cylinder was press fit over the others

after the obturator was inserted to insure alignment of the inner pieces and

provide rigidity (Fig. 14). The ends of this lucite assembly were then press

fit into aluminum end-pieces similar to those in Fig. 14. These end-pieces

served as the shaft for the bearings and one also served as the prime mover

(bucket wheel) for the apparatus. The shaft rotated in two ball bearings

mounted in aluminum pillow blocks aligned on a rigid pedestal. The prime mover
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Figure 12. Polished spot orientation on obturator and relation-
ship to 9 .
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Figure 13. Obturator and components of lucite obturator
housing with mating ends of inner cylinders
machined to house the obturator.
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Figure 14. Assembled obturator housing with aluminum
end pieces.
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was a bucket wheel machined from a solid aluminum disk (Fig. 15).

The bucket wheel was driven by compressed air supplied from an install-

ed system through an air filter to a manifold and then through one of two

Model-10 Kendall pressure regulators. From the regulator, the air passed

through a flexible tube to a tee, each leg of which supplied a nozzle. These

nozzles were mounted opposite one another on the pillow block in such a way

as to allow the air jets to impinge upon the bucket wheel to cause rotation

(Fig. 16). The speed of rotation was sensed by a Bentley Nevada Proximitor,

Model 3100N, which was mounted above the bucket wheel to detect the passage

of each point on the wheel. The pulses generated by the sensor were counted,

averaged and displayed as a frequency by a Monsanto Programmable Counter-Timer

Model HOB.

While the spin- up rig was being brought up to the desired speed, an

air jet(subsequently referred to as the holding jet) from a nozzle mounted

rigidly on the pedestal at the end opposite the bucket wheel held the obturator

fixed to the spinninq rig. The holding jet passed through a hole in the

plunger of a Rocker Solenoid, R.S. No. 10-207. This hole was aligned with

the hole through the "projectile" to allow the jet to impinge upon the obturator

(Fig. 17). When the appropriate switch was activated, standard 115VAC was applie

to the Rocker solenoid and removed from a normally-closed ASCO Solenoid Valve

in the air supply line to the hoi ding- jet. The plunger retracted from the

position shown in Fig. 17 and the solenoid valve closed. The retraction of the

plunger performed three functions. It first caused a pulse to be generated

by a proximitor mounted next to the nozzle. This pulse started the timer

function of a second Model HOB Counter-Timer. The plunger, by misaligning its

hole with that of the nozzle, blocked the holding jet. This removed the re-

straining influence of the holding jet on the obturator and prevented any air
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remaining in the supply line from impinging on the obturator. And lastly,

in the fully retracted position, the machined and polished end of the plung-

er was positioned opposite the axis of the apparatus (Fig. 18). When the

obturator, now free to move relative to the "projectile", nutated through

enough of an angle, the beam of a SPECTRA PHYSICS MODEL 132 LASER, MODEL NO.

3187, passed through the projectile and was reflected by the polished end of

the plunger onto a light sensitive diode (Fig. 19). The pulse emitted by the

diode triggered the stop channel on the timer and the elapsed time was dis-

played. Figure 20 shows the entire experimental set-up with air flasks in the

background.

EXPERIMENTAL PROCEDURE

The obturator was positioned in the spin-up rig in such a way that the

laser beam was reflected off the polished spot back to a target mounted on the

laser (Figs. 20 and 21). The center of the target is the location of the beam

and the obturator was adjusted to place the reflected spot on the center of

the target. Thus the orientation of the z-axis through the obturator was

known relative to the z-axis (laser beam) through the projectile. This is the

initial value 9 .

o

Once the alignment had been checked and the obturator positioned and held

at the known 9 , flow to the turbine nozzles was controlled in such a way that

the desired spin rate was achieved. The turbine flow regulator was then adjust-

ed so as to maintain the spin rate at ±5 Hz on the digital display or approxi-

mately ±1.75 rad/sec. Once the desired rate was achieved and noted, and the

timer checked and reset if necessary, the solenoid switch (Fig. 17) was acti-

vated. The obturator was released and began to move relative to the spin-up

rig. When the angle 9 reached the value at which the laser beam could pass

through the obturator hole [9 = 9* = sin
-1

(r/R)], the beam struck the polished
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Figure 21. Laser reflection on the target from the polished
spot on the obturator.
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plunger and was reflected into the light sensitive diode housing. The

reflected beam striking the diode caused the diode to emit a pulse which

turned off the timer gate. The elapsed time, from plunger retraction to

release to the obturator nutating to 8*, was displayed on the timer dis-

play to the 0.0001 second. This time, t*, was recorded.

EXPERIMENTAL DETERMINATION OF THE COEFFICIENT OF SLIDING FRICTION, y .

s

From Eq. (25) it will be noted that for large values of Cgj t the time
po

elapsed for nutation from to 6* is given by:

t* = -C(8
o

- 9*) + D]/(Ro)
po

) + 2c/u
po

Without the influence of fluid shear (which is negligible in this case),

Eqs. (34), (35) and (39) lead to:

t* - ^Aoj
po

[(9
o

- 9*) - (A/2)sin29
o
]/(2u

s
WRsin0

o
)

as 2,/^

At relatively high spin rates, therefore, the elapsed time t* is expected

»

to vary directly with go . Such being the case, the coefficient of sliding
po

friction, u , may be estimated from the slope of data for t* vs 8* at high

values of to .

po

DISCUSSION OF THE EXPERIMENTAL RESULTS

Figure 22 shows the results of experiments in which the angular velocity

was varied within the range of capability of the experimental apparatus.

Two balls were tested, each with different hole sizes (see Table I) but

otherwise essentially identical. Also shown in Fig. 22 are the theoretical

predictions given by the exact solution and by the asymptotic form of the

linear approximation, Eq. (41). This latter expression has been matched to

the data at high spin rates in order to obtain empirical estimates of the

coefficient of sliding friction, u .
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The experiments verify the theoretical prediction of the high-speed

asymptote and the existence of a minimum in the elapsed time for ball -open-

ing, with respect to projectile spin rate. The discrepancies between theory

and experiment at lower spin rates (where the linear approximation is not ex-

pected to be valid) are thought to be mainly due to inadequacies in the ex-

perimental apparatus. At these low spin rates there is a prolonged period

of "hover" of the ball near its initial position, followed by a rapid de-

crease in tilt angle (see Fig. 8). During these initial instants of time

any external disturbances will tend to cause a premature conclusion of the

hovering period and it is this effect that is thought to have led to the low

measured values of t* at the lower values of to „. The effect is more pro-
po K

nounced in the Mod I ball which, due to its small value of X, is considerably

less prone to align itself, particularly at the lower values of cavity spin

rate.

The experiments were also limited in precision due to the interaction

of the holding jet with the solenoid-actuated plunger. This difficulty

contributed to the scatter of data and limited the maximum usuable value of

<jj because of the hiqh jet pressures required to hold the ball in position
po

at high spin rates

.

The empirically determined value of the coefficient of sliding friction,

0.30 for the Mod I ball, appears to be reasonable in comparison with the value

of 0.35 reported for laminated plastic on steel [15]. The larger value of y
$

=

0.51 for the Mod ball is thought to be due to the influence of the relatively

large hole which, in the high-speed rotating motion, will have an effect

similar to that of roughness. Within the precision of the experiments there

was no detectable influence of speed upon y
$

and the assumption of a constant

value for this parameter appears to have been justified, at least for the

higher values of w
po
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SENSITIVITY TESTS AND DESIGN GUIDES FOR

AERODYNAMIC LOADING

Figure 11 shows a comparison of the linear approximation with the

exact solution for the motion of the baseline model (Table 2) at the

nominal spin rate of 115,000 RPM. Two initial ball tilt angles are also

shown and it may be seen that the linear approximation yields results that

are quite acceptable for initial angles near 90°. The values of M, R, and

D are given on the figure for reference purposes. The usefulness and limita-

tions of the approximate method are also illustrated in Fig. 23 where the

initial opening time is given as a function of projectile spin rate. As

in the experimental program this time, designated as t*, is the time required

for a straight-through path to open along the projectile centerline. The

ball tilt angle at this instant is given by

0*.= sin'^r/R)

and the corresponding time is a useful reference quantity for comparison of

various obturator designs. (In addition, the aerodynamic force model used

in this analysis becomes highly suspect at values of 9 below 9* since the

simple shock structure assumed here will be invalid if there is any signifi-

cant flow through the projectile).

Figure 23 indicates that the linear approximation approaches the exact

solution at large values of co . This is to be expected since M decreases
po r

quadratically with oo . The asymptotic behavior of t* at high oj is a
po po

useful design insight and is given by

t* = Agj[(9„ - 9*) + D]/Msin0
rt00 po

and for the baseline case this reduces to t* - 4.0 x 10
_lt

oj ms
00 po

(cu in s
l
). The sharp minimum in t* illustrated in Fig. 23 suggests some
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caution in the design of these devices and also provides encouragement re-

garding the existence of criteria leading to an optimum design. The low

spin-rate behavior shown in Fig. 23 is outside the linear range of operation

and is due to the delaying mechanism of sliding friction at relatively large

values of M (large friction, low inertial imbalance due to a small hole in

the ball, and/or low projectile spin rate).

Under these conditions the ball "hovers" at its initial value and con-

siderable time elapses before a ball orientation is achieved in which friction

is in a direction to aid the alignment of the hole with the projectile axis.

This behavior has been observed in previous solutions (see Fig. 8), and in

the experimental program (see Fig. 22). Design guidelines necessary to avoid

the hovering mode are discussed below, following a discussion of the results

of the sensitivity analysis.

SENSITIVITY ANALYSIS

The design variables affecting the obturator performance are those con-

tained in the normalized torque determined by Eqs. (18) - (21). The influence

of the time-varying relative angular velocity and moment arms in these ex-

pressions may be qualitatively evaluated by referring to the linear approxi-

mation so that the relevant design variables are [Eq. 40] A, u_ , F , 3, 6 ,

s a o

R, and oj . Since X and B are geometric parameters depending upon the radii

of the ball and its hole; and the minor moment of inertia, A, depends upon

these as well as the density of the ball material, this list may also be

written: r, R, p y , M , P , and oo . Here the aerodynamic force has been
* » s °° °° dO

replaced by means of Eq. (21) and the projectile hole is assumed to be of the

same size as that of the ball. In considering the coefficient y , it must be

remembered that it depends upon the two materials (ball and projectile) and

is therefore dependent upon p. We have studied independent variation in y ,

however, since its value is subject to considerable uncertainty. Experiments
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have shown that the value of u should be approximately 50% larger than

that published for dry friction between smooth surfaces. Table 2 indicates

the baseline value for these design variables as well as the maxima and minima

that determines the range of sensitivity analysis. In each case (except

co , which has been previously discussed) the values of the variables were

chosen such that equal increments were provided and the baseline condition

was included in the range. Single parameter variations are shown here al-

though work is continuing using the techniques of numerical optimization.

The computer data are presented as 9 vs t and the interested reader

may construct cross-plots such as that of Fig. 23 to evaluate the effects

of these design variables upon the time required to reach a given angle, such

as 9*. Figures 24-29 illustrate the relative importance of the selected

design variables. It is important to note that in these figures the range of

system performance has been restricted to the quasi-linear range previously

discussed where the ball response is typically of the type shown in Fig. 8

and above the minimum in Fig. 23. Outside of this range (in the "hovering"

state) the trends illustrated may be reversed. Attempts to reduce ball re-

sponse time by the design improvements suggested by Figs. 24-29 may push the

performance beyond the minimum illustrated in Fig. 23, with resulting "negative

improvements". In many cases the implications of Figs. 24-29 are self-evident

but to assist in physical interpretation a few explanatory remarks are offered

below.

Geometry effects .

Both the ball radius, R, and the radius of the ball hole, r, were varied

independently. Figure 24 shows the effects of increasing the ball radius while

maintaining a constant value of r/R. The variation in this case is essentially

one of scale-up which covers a range of projectile diameters from 20mm to 100mm.
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Figure 24. Effect of ball size on ball response.
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It may be seen that larger systems respond more slowly. Increases in applied

torques are not sufficient to offset the effects of the fifth-power relation-

ship between ball inertia and radius. Figure 24 indicates that opening of the

ball obturator in large projectiles may be unacceptably slow unless compensat-

ing design actions are taken. As will be seen in subsequent figures, such

actions might include increases in ball hole radius and reduction in the den-

sity of the ball material.

Increasing the size of the hole in the ball, with all other parameters

held constant, reduces the inertia of the ball and increases the imbalance

between the moments of inertia about the two principal axes. Both effects

are conducive to rapid ball response and this is illustrated in Fig. 25.

In addition, the initial opening angle, 9*, is directly increased by an

increase in r/R with a corresponding decrease in the elapsed time.

Material effects .

Though the ball-obturator must be of sufficient strength to pi uq the

projectile during launch, it does not contribute to the structural integri-

ty of the projectile in flight. The ball material may therefore be open

to some design variation and this possibility is investigated in Fig. 26

where it is seen that the time required to reach a given ball angle is

approximately proportional to the density of the ball material, p A

change in ball material from Carbon steel (p ^7,750 kg/m 3
) to an Aluminum

alloy (p ^3,100 kg/m 3
) would lead to a halving of the response time. This

effect also leads to an opportunity of linearly tailoring the ball response

time by means of its density--a feature that may be particularly useful in

applications of the system as a hydromechanical switch.

Coefficient of sliding friction .

As has been mentioned, the correct value of u
$

is subject to consider-

able uncertainty. Figure 7 shows the impact of an uncertainty range of

about ±20% in u which, in terms of t*, is about ±15%. In applications for
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which margins of error such as this are unacceptable, tests of prototype

configurations may be necessary to determine u . The range tested in

Fig. 27 represents a best estimate for dry friction of steel on steel

for the range of r/R covered in Fig. 25. Systems using dissimilar materi

als will require appropriate adjustments in y . In addition, it may be

seen that some roughening of the interfacial surfaces may not be detri-

mental to system performance while, on the other hand, intential polish-

ing of these surfaces may lead to slower ball action.

Launch conditions .

Projectile launch Mach number and altitude have been separately in-

vestigated with the results shown in Figs. 28 and 29. The increase in

wave drag associated with higher Mach numbers are actually beneficial in

terms of ball response, because of the corresponding increases in the

external moments that aid the motion of the ball within the projectile.

On the other hand, increases in launch altitude lead to increases in

ball response times. In proceeding from sea-level to a flight-level

pressure of 0.325 atm (about 30,000 ft in the standard atmosphere), for

example, a threefold increase in t* is predicted for the baseline design.

DESIGN GUIDES

The linear approximation previously developed represents a signifi-

cant simplification to the computational tasks required for the exact

solutions. As such, this simplified approach is recommended for design

and "first-cut" calculations. As has been seen, however, there is a

minimum in elapsed time (see Fig. 23, for example) which represents a

demarkation of the limit of validity of the linear approximation as well

as a point of optimum design for the ball obturator. A means for esti-

mating this optimal point is developed below.
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Under the initial conditions of the problem at hand ($=0 , 0-0, 9=0,

9=9 ) the equations of motion [Eqs. (8) - (10)] may be written:

(p = 9 cot9

$ = -9 cos29 /sin9ooo
9 = -M6 - (X/2)sin29

o o

Here the term M9 is retained since it may be significant for large values

of M even though 9 is initially zero. In addition, in the initial instants

of motion, the relative motion of the two bodies is largely due to nutation.

That is, co - -9 , and
r o

M9 - -M/Ato
2

po

Thus an approximation to the initial acceleration 9 is given by

9 - (M/Aco
2

) + D = constant

In cases in which hovering occurs this expression will be approximately

zero and an indication of a hovering design is therefore given by

M

po

= -D

and the design guide to avoid hovering is given by

Aco *|D
po '

< 1

In the initial instants, the applied moment due to aerodynamic loading

may be conservatively estimated as M = u FRcosB so that the design
sa s a

criterion is given as

2 y F RcosB
H = ^ < 1 (42)

XAo)
2 sin29

po o

where, as usual, B = sin
_1

(r/R). Note that in this expression as X ->

or 9 > it/2 the factor H grows beyond bound. The first situation occurs
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if there is no hole in the ball (A = C) and the second case represents the

stable initial condition. Equation (42) indicates a hovering condition in

both cases, in accordance with expectations.

As an example, consider the baseline case (Table II). For this

design and Mach number, F
a

- 93 N (about 21 lb). Inserting the other

constants from Table II we have

H = 0.735

and the prediction is that hovering is avoided. If the same design is con-

sidered but Eq. (42) is solved for co in the critical case (H = 1) we
po

have co (critical) - 10,000 s"
1
or about 98,000 rpm. Comparison of these

calculations with the results indicated in Figs. 8 and 23 shows a wery

good agreement. In particular, Fig. 23 shows that if the equality is

used in Eq. (42) a yery good estimate of the optimum design is obtained.

Thus, for a given worst-case launch condition (maximum F due to maximum

Mach number and minimum altitude) and initial projectile spin rate (low-

est value for worst case) the optimum ball design (A, A, 6, u , 9 ) may

be deduced from Eq. (42). It would be wise, of course, to apply some

safety factor to this optimum design and, in any case, a violation of

the inequality in Eq. (42) would lead to hovering - a failure in the

operation of the ball -obturator. To repeat, if the inequality is satis-

fied in Eq. (42) the linear approximation [Eqs. (25) and (40)] may be

safely appl ied.
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CONCLUSIONS

The gyrodynamic motion of a ball obturator within a spinning tubular

projectile has been investigated from both theoretical and experimental

points of view. The theoretical developments have included both exact and

approximate formulations and comparison of these two theories has led to

the definition of the range of validity of the approximate method.

The experimental program was conducted under conditions in which the

main source of external moment was sliding friction due to the weight of

the ball. The results of these tests have substantiated the validity of

both the exact and approximate theories and have led to several insights re-

garding the motion. In addition, a semi -empirical method of measuring the

coefficient of sliding friction evolved from the experimental program.

Two distinct regions of motion have been identified. The first of

these - the hovering mode - is characterized by a metastable initial ori-

entation for prolonged periods of time. This undesirable behavior may

be avoided if design guides developed within this study are followed.

The second region of motion occurs when the hovering region is avoid-

ed and in this mode, the response of the ball is approximately linear. The

analysis has shown that minimum ball-opening times may be expected for ball

designs and projectile launch conditions that are near (but not beyond) the

onset of hovering motion.

The analytical model has been used to conduct sensitivity tests to de-

termine the relative influence of design parameters for ball designs that are

in the proper (non-hovering) range. In general, ball response is more rapid

for larger hole sizes, lighter material, greater sliding friction, higher

launch Mach number, and lower launch altitudes. Small obturating balls will

respond more quickly than large ones, all else being equal. The theoretical
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predictions depend directly upon the nature and magnitude of the aero-

dynamic load acting upon the ball in flight. Uncertainties regarding the

theoretical description of this load are the main source of doubt re-

garding the precision of the predictive models presented herein.
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LIST OF SYMBOLS

A Mass moment of inertia about minor axis

C Mass moment of inertia about major axis (axis of hole in ball)

D Step input associated with linear model

e Unit vector

F Force

h Gap width separating ball and cavity (fluid friction model)

H Design criterion, see Eq. (42)

k Ratio of specific heats

M External moment (also used to denote Mach number)

P Pressure

r Radius of hole in ball

R Radius of ball

R Slope of ramp input associated with linear model

r Moment arm
m

t Time

Greek Letters

3 Angle used in locating contact points ( = 0* = sin
_1

r/R )

Y Angle used in locating contact points (see Fig. 5)

c Dimension! ess gap width ( = h/R )

C Damping coefficient associated with linear model

n Angle used in locating contact points (see Fig. 5)

X (C - A)/A

y Molecular viscosity of fluid in gap

p Density of ball material
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LIST OF SYMBOLS

Greek Letters (continued)

$ Phase angle associated with linear approximation (see Eq. 25)

<J>,^,9 Euler angles

to Angular velocity

oj Spin rate of projectile

Subscripts

1,2,3 Refer to body fixed axes

a Aerodynamic quantity

f Fluid quantity

g Refers to gravity load

n Normal component

o Initial quantity (also refers to solutions of torque-free motion)

r Denotes relative angular velocity

s Associated with sliding friction

x,y,z Refer to inertia! (projectile-fixed) axes

«" Vector quantity

00 Conditions in free stream

Superscripts

Dimensional quantity - absence infers non-dimensional ized time-dependent
quantity. E.g. = 6(a) ) .

* Refers to condition of first opening of 1 ine-of-sight along projectile

axis and through hole in ball obturator
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